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Abstract

Network meta-analysis (NMA), also known as multiple treatment comparisons, is commonly
used to incorporate and compare direct and indirect evidence comparing treatments. With
recent advances in methods and software, Bayesian approaches to NMA have become quite
popular and allow models of previously unanticipated complexity. However, when direct and
indirect evidence con�ict in a NMA, the model is said to su�er from inconsistency. Current
inconsistency detection in NMA is usually based on contrast-based (CB) models; however,
this approach has certain limitations. In this work, we propose an arm-based (AB) random
e�ects model, where we detect discrepancy of direct and indirect evidence for comparing two
treatments using the �xed e�ects in the model, while �agging extreme trials using the random
e�ects. Our approaches permit users to address issues previously tackled via CB models.
We compare sources of inconsistency identi�ed by our approach and existing loop-based CB
methods using real and simulated datasets, and demonstrate that our methods can o�er more
powerful inconsistency detection.
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1 Introduction

In comparative e�ectiveness research, network meta-analysis (NMA), also known as mixed

treatment comparisons [1, 2], is an extension of the pairwise meta-analysis method [3] to com-

pare the results from two or more studies that have at least one treatment in common. This

enables both direct and indirect comparisons, and addresses the comparative e�ectiveness or

safety of the interventions based on all sources of data. Because of its enormous potential, in-

terest in this methodology has grown substantially, and the application of NMA is increasingly

common [4]. Moreover, drug regulators and other national health agencies have increasingly

adopted such methods [5, 6].

One of the key assumptions for NMA is consistency [1, 7�9]. As shown in the NMA

network graph in Figure 1, each vertex represents a treatment and each edge represents a

pairwise comparison. In Figure 1(a), the comparison of P vs. A and P vs. B is direct evidence,

and there is no head-to-head comparison between A and B. To make inference about A vs. B,

we can only use the indirect information from studies of P vs. A and P vs. B. In Figure 1(b),

where we instead have direct evidence between A and B, we can now compare A and B using

both direct and indirect information. However, when direct and indirect evidence con�ict in

a NMA, the model is said to su�er from inconsistency. Using Figure 1(b) as an example,

consistency holds if

dAB = dPB − dPA, (1)

where dAB is the treatment e�ect (e.g., log odds ratio) of B vs. A. Inconsistency can arise due

to many causes, including non-comparability of trials, di�erent control groups, or di�erences

in patient characteristics. If inconsistency is present, information from di�erent sources may

disagree, and the treatment e�ects estimates obtained from the NMA may be biased or hard

to interpret. Many remedies have been suggested, including adding �xed covariate e�ects to
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Figure 1: Networks between treatments. Each vertex represents a treatment and each edge
represents a pairwise comparison. (a) Indirect comparison between A and B. (b) Both direct
and indirect comparison between A and B.

account for di�erent patient characteristics. As a �rst step, it is important to detect inconsis-

tency and its likely sources. But as the number of studies increases, network complexity often

precludes a quick diagnosis of inconsistency and identi�cation of which studies or treatments

are these sources.

In this paper, we will review inconsistency detection methods using various NMA models

and propose another. Bayesian hierarchical models for NMA with binary outcomes have been

well studied. The logit model initially proposed by Lu and Ades [2] is a contrast-based (CB)

model, which uses the log odds ratio to estimate relative e�ects of two treatments. Furthermore,

a �xed e�ects model is used when we assume treatment e�ects do not vary between studies,

while a random e�ects model is implemented when heterogeneity between trials is allowed.

Inconsistency detection is thoroughly discussed by Lu and Ades [7] for CB models using two

illustrative datasets [10, 11]. They proposed examining loop-based inconsistency by adding one

parameter called an inconsistency factor (ICF), w, to the consistency relationship as shown

in (1): dAB = dPB − dPA + wABP , where three treatments are connected in a cycle, like the

loop ABP in Figure 1(b). The posterior distribution of w re�ects the extent of inconsistency

in a particular evidence loop. Most recently, the back-calculation and node-splitting methods

proposed by Dias et al. [8] have streamlined the process of inconsistency detection by looking
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in more detail at speci�c comparisons. The �rst method is useful when only pooled summaries

of the pairwise contrasts are available, while the second method is more general and can be

applied to networks with trial-level data. Both approaches extend inconsistency detection to

any network, not merely triangular node structures. Higgins et al. [9] conducted inconsistency

detection in NMA using multivariate meta-regression, extending the full design-by-treatment

interaction model proposed by Lumley [1] to include multi-arm trials. Higgins et al. compared

their method to Lu and Ades' method, and concluded that the inconsistency model proposed

by Lu and Ades is a restricted version of their full design-by-treatment interaction model.

All the inconsistency detection methods mentioned above are based on CB models. How-

ever, these methods su�er from certain limitations due to their focus on relative e�ects [12, 13].

First, they require one arm in each study to be designated as the �baseline�. Since many NMAs

do not have a common �control� arm (such as a placebo or �standard of care�), any parameters

for such �baseline� groups are generally hard to interpret. Moreover, for binary outcomes,

CB models for NMA typically analyze only a summary statistic, often the odds ratio (OR).

Because they treat the underlying �baseline� risks as nuisance parameters, CB approaches fail

to estimate the treatment-speci�c response proportions [13]. Finally, the CB model restricts

the variance of a baseline e�ect to always be smaller than that of the other treatments [12].

For these reasons, several authors have suggested an alternative method for NMA often called

the arm-based (AB) model, which models the absolute (rather than relative) e�ect of each

treatment. The AB model requires an assumption of exchangeability of treatment arms across

studies, while the CB model assumes exchangeability of only the relative treatment e�ects

compared to baseline (�treatment contrasts�), measured on an appropriate scale (e.g., OR)

across studies. However, even this standard CB assumption is di�cult to justify, especially

for binary outcomes where the standard logit scale used is arbitrary and chosen primarily for

statistical convenience.
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In this paper, we aim to develop an inconsistency detection method using the arm-based

random e�ects (ABRE) model, which is distinct from loop-based and other inconsistency

detection methods for CB models. Lu and Ades presented the �rst key CB inconsistency

analysis, and while later researchers have produced arguably better CB methods [8, 9], they

all su�er from complications arising from the CB formulation. Therefore, like earlier authors we

review and compare to Lu and Ades's method, since it is relatively simple and the comparison

can be made for both loop- or non-loop-based methods. Under our AB model framework, we

look for possible inconsistency in two ways: (1) by using estimates of the �xed e�ects in the

ABRE models to test the discrepancy of the direct and indirect evidence for comparing two

treatments, either loop-based or not; and (2) by using estimates of speci�c ABRE random

e�ects to detect inconsistency at certain trial-by-arm combinations, once inconsistency has

been detected through the ABRE model �xed e�ects .

The rest of our paper is organized as follows. In Section 2, two motivating datasets used in

Lu and Ades [7] are described; they will be used throughout our analysis. Details of current

models for NMA will be illustrated and methods to detect inconsistency investigated in Section

3, including our proposed methods using AB models. This section also applies our methods

to one of the example datasets, and compares our results to those of Lu and Ades [7]. Section

4 then evaluates our methods via simulation. Finally, in Section 5 we summarize and o�er

directions for future research.

2 Motivating Examples

2.1 Thrombolytic Drugs Dataset

Our �rst illustrative dataset is described in a systematic review [10], and compares eight

thrombolytic drugs for use after acute myocardial infarction with the primary outcome being

30-35 day mortality. Twenty-eight trials were conducted to study eight drugs: reteplase (Ret),
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Table 1: Thrombolytic drugs dataset (total number of events/ total number of subjects).

streptokinase (SK), urokinase (UK), alteplase (tPA), anistreptilase (ASPAC), accelerated al-

teplase (AtPA), tenecteplase (Ten), and streptokinase plus alteplase (SK + tPA). The dataset

is shown in Table 1, which displays total number of events over total number of subjects for

the treatment groups in each trial. The evidence network is plotted in Figure 2(a), with each

vertex representing a treatment and each edge representing a pair of treatments for which at

least one direct comparison exists. The indices of the trials having each pairwise comparison

are shown in square brackets to the left of or above the corresponding edge.

2.2 Smoking Cessation Dataset

Our second illustrative NMA dataset compares smoking cessation strategies reported by

the Agency for Health Care Policy and Research (AHCPR) Smoking Cessation Guideline

Panel [11], which has been analyzed by Lu and Ades [7] among others. It consists of 24 studies

to compare the relative e�ect of three treatments (B: self-help; C: individual counseling; and D:
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Figure 2: (a) Network for thrombolytic drugs dataset. Each vertex represents a treatment
and each edge represents a pair of treatments for which at least one direct comparison exists.
The indices of the trials having each comparison are shown in square brackets to the left of
or above the corresponding edge. (b) Network for smoking cessation dataset. Each vertex
represents a treatment and the indices of trials having each comparison are shown in square
brackets on the corresponding edge.

group counseling) vs. the baseline treatment (A: no contact). While we do not show these data

explicitly, Figure 2(b) gives the evidence network showing the connection between all treatment

groups, where again the indices of trials having each comparison are shown in square brackets

on the corresponding edge.

3 Current Models for Inconsistency Detection in NMA

In this section, we will review various models for NMA, and investigate the associated

methods to detect inconsistency in the network. We assume the outcome Yik for each study

follows a binomial distribution as in our sample datasets,

Yik
ind∼ Bin(nik, pik), i = 1, . . . , I, k = 1, . . . , K, (2)

where Yik is the total number of subjects with events, nik is the total number of subjects, and

pik is the probability of the outcome in the kth treatment arm from the ith study.
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3.1 Contrast-Based Random E�ects (CBRE) Models

The NMA logistic model proposed by Lu and Ades [7] is introduced for a single outcome.

Using a contrast-based model, we wish to estimate relative e�ects of treatment pairs. One can

use random e�ects to capture heterogeneity between studies, namely

logit(pik) = αiB + δiBk, (3)

where B refers to the baseline treatment. Unless there is a common treatment to all studies, the

baseline treatments in the studies will be di�erent. Here, αiB is the log odds of the response for

the baseline treatment in study i, and δiBk is the log odds ratio of treatment k versus baseline

for the ith study. An independent normal speci�cation for the random e�ects δiBk is assumed:

δiBk
ind∼ N(dk − dB, σ2), (4)

where δiBk follows a normal distribution with mean equal to the contrast dk − dB, and δiBk

varies across i, capturing the variability in the log odds of contrast for di�erent studies. This

assumes exchangeability of these di�erences in dk on one speci�c scale used for analyzing binary

data, the log-odds scale. From the posterior distribution of the dk, the relative e�ects of each

treatment can be calculated. In this random e�ects model, the same variance σ2 is assumed for

all treatment groups, so it is called a homogeneous random e�ects model. If a trial has more

than two arms, we need to assume a particular variance-covariance structure for the vector

~δi = (δiB2, ..., δiBK)′. The vector ~δi then follows a multivariate normal distribution, with the

correlation between any two treatment e�ects equal to 0.5 under consistency by construction [7].

If we change the variance σ2 in (4) to σ2
Bk, we obtain a heterogeneous random e�ects model,

associating di�erent variances with speci�c pairwise comparisons. As mentioned by Lu and

Ades [14], estimating the parameters in the heterogeneity model is a di�cult problem due to the

implicit constraints on the variances from the NMA structure, which becomes quite complicated
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when the NMA includes many multi-arm trials. Therefore, we focus on the standard CBRE

model with homogeneous random e�ects.

3.2 Arm-Based Random E�ects (ABRE) Model

The term �arm-based� is used here to refer to a model proposed by Hong et al. [12] and

Zhang et al. [13], although the term has been used somewhat di�erently elsewhere [15, 16]. In

this model, instead of estimating a mean contrast in each trial, we estimate the logit response

probability for each treatment for binary data:

logit(pik) = µk + ηik, (5)

where µk is the (�xed-e�ect) mean outcome for treatment k, and ηik is the random e�ect for

treatment k in study i. Then the random e�ects ~ηi for study i can be structured as:

~ηi = (ηi1, . . . , ηiK)′∼MVN(0,Σ), (6)

where Σ is an K ×K unstructured covariance matrix to allow correlation between treatment

arms in each trial. Compared to the CB model framework, AB models are more straightforward

to interpret, especially when implemented in a missing-data framework that imputes values for

any missing treatment arms, thus allowing use of a common baseline across all treatments [12].

However, ABRE models do have slightly more parameters to be estimated, since they model

the absolute e�ect of each treatment, rather than relative e�ects as in CBRE models. As

noted, these two approaches make di�erent assumptions of exchangeability: we assume trials

are exchangeable according to the levels of treatment outcomes, while CB methods assume

that trials are exchangeable according to treatment contrasts.

3.3 Priors for CBRE and ABRE Models and Model Selection

An important issue in Bayesian modeling is the choice of prior distributions for each of the

model parameters. This could be a traditional informative prior, which might come from a
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literature review or explicitly from an earlier data analysis. But in the situation where there

is no previous information about the parameters, we often choose proper, weakly informative

prior densities, and let the data drive the posterior distribution [17].

In this paper, to keep our modeling somewhat generic, we use weakly informative priors

for both CBRE and ABRE models. Such priors for CBRE models are also described in Lu

and Ades [7]. For all our models, the �xed e�ects (αiB, dk, and µk) are assumed to follow

a N(0, 1000) distribution, which is very vague but proper. We also assume all CBRE ICFs

(the ws) independently follow a N(0, σ2
w) distribution. In the homogeneous random e�ects

model, we adopt uniform priors σ ∼ U(0, 2) and σw ∼ U(0, 2) for the standard deviations of

the random e�ects and the ICFs, respectively. For the precision matrix of the random e�ects,

we choose a Wishart prior Σ−1k ∼ W (V, n), where the degrees of freedom n = K, the number

of treatments, and V is a K ×K matrix with diagonal elements equal to 0.1 and o�-diagonal

elements equal to 0.005. Using the R function rWishart(), we can calculate that the above prior

corresponds to a 95% prior credible set of 0.14− 11.52 for the standard deviation parameters

and a 95% credible set of -1.00 to 1.00 for the correlation parameters, con�rming it is weakly

informative.

For Bayesian model selection and comparison, we use the Deviance Information Criterion

(DIC). DIC is a Bayesian generalization of the Akaike information criterion (AIC), and is

calculated as the sum of pD and D̄, where D̄ is a measure of goodness of �t and pD is the

e�ective number of parameters in the model [18]. A model with smaller DIC (say, by 5-10

units) is preferred.

3.4 Software

WinBUGS was used to obtain MCMC samples for all our Bayesian NMA models. Standard

diagnostics, including trace plots and sample autocorrelations, were implemented to check
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MCMC convergence. Lu and Ades [7] provide WinBUGS codes for CBRE models for the above

two examples. WinBUGS code for our ABREmodels are available at www.biostat.umn.edu/ brad/-

software.html.

3.5 Inconsistency Detection in CB models

In Section 1, we introduced loop-based inconsistency as proposed by Lu and Ades [7]. In this

approach, the number of inconsistency degrees of freedom (ICDF) must be determined. ICDF

is informally de�ned as �the number of independent `loops' of evidence� in the network [19].

When there is no multi-arm trial in the network or when each pair of arms compared in a

multi-arm trial is also compared in another trial, ICDF is calculated as T −K + 1, where T

is the total number of direct pairwise comparisons and K is the number of treatments. Using

the smoking cessation dataset (Figure 2(b)) as an example, T = 6 and K = 4, so there are

ICDF = T −K + 1 = 3 independent �loops� of evidence for estimating inconsistency in the

dataset. To model this inconsistency, (1) is modi�ed by adding an inconsistency factor w for

each loop:
dBC = dAC=dAB + wABC ,
dBD = dAD=dAB + wABD,

and dCD = dAD=dAC + wACD,
(7)

where the posterior distributions of the 3 added parameters measure the e�ect of inconsistency

in the 3 respective loops. However, it is not clear how big the inconsistency factor should be for

the network to qualify as �inconsistent�. For example, using the thrombolytic drugs dataset,

although the point estimate for one of the w factors is fairly di�erent from 0, the 95% posterior

credible interval (CI) for this w factor covers 0, suggesting no �signi�cant� inconsistency. Also,

it is not clear which three independent loops from the four that are possible (ABC, ABD,

ACD and BCD) should be selected in (7). With a di�erent parameterization (i.e., selecting a

di�erent 3 loops), the estimates of the relative e�ects using CB models would be di�erent.

A further complication is that when some treatment arms are involved only in multi-arm
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trials, the above ICDF formula needs to be reduced by S, which is the number of inconsistency

loops where direct comparisons of pairs of arms are only present in multi-arm trials, not in

another trial [7]. As shown in Table 1, there are T = 13 direct comparisons in the thrombolytic

drugs dataset: 1-2, 1-3, 1-4, 1-6, 1-7, 1-8, 2-4, 2-5, 2-6, 2-7, 2-8, 3-7, and 3-8. Since the

comparisons of 1-2 and 2-4 are only estimated in the multi-arm Trial 1, the inconsistency

relation for loop 124 cannot be estimated; there is no indirect evidence regarding this loop.

Therefore, in this dataset S = 1 and ICDF = T −K + 1− S = 13− 8 + 1− 1 = 5. A valid

set of inconsistency equations modifying model (1) is thus

d62 = d61=d21 + w126,
d72 = d71=d21 + w127,
d82 = d81=d21 + w128,
d73 = d71=d31 + w137,

and d83 = d81=d31 + w138.

(8)

Here, the parameterization happens to be unique since there are only �ve independent loops.

However, this will not happen in general. Also, when many multi-arm trials are presented in

a NMA, it may become di�cult to calculate S, whence there will be no general formula to

determine ICDF [7].

3.6 Inconsistency Detection in AB Models

Since AB models implicitly assume consistency, which we will investigate in detail later

(Section 3.7.1), instead of using loop-based w's we propose using the ABRE �xed and random

e�ects to detect inconsistency. For the thrombolytic drugs dataset, Lu and Ades [7] argue that

the posterior distribution of w128 indicates evidence for a potential inconsistency problem in

loop 128 associated with Trials 22 and 23. Therefore, we use this dataset to show how one

might detect inconsistency in AB models. Analysis of inconsistency detection for the smoking

cessation dataset using AB models has also been performed. However, like Lu and Ades [7], our

results also suggest absence of serious inconsistency in this dataset, so we omit these results.
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3.6.1 Inconsistency Detection in AB Models using Fixed E�ects

To directly measure the discrepancy of direct and indirect evidence for comparing two

treatments (say, A vs. B) in an arm-based model, we can divide the trials into 4 groups:

(i) trials that include both A and B, (ii) trials that include A but not B, (iii) trials that

include B but not A, and (iv) trials that include neither A nor B. Following (5), the �xed

e�ects estimating the log odds of an event under treatments A and B in the �rst group can

be denoted as µ
(i)
A and µ

(i)
B , respectively. Similarly, the �xed e�ects estimating the log odds

of an event under treatment A in the second group and treatment B in the third group can

be denoted as µ
(ii)
A and µ

(iii)
B . The discrepancy between A and B using arm-based models can

then be tested by computing the posterior distribution of the discrepancy factor

∆AB = (µ
(i)
A − µ

(i)
B )− (µ

(ii)
A − µ

(iii)
B ), (9)

which is the di�erence in treatment e�ects in trials including both arms (the direct evidence)

minus the di�erence in trials including just one arm (the indirect evidence). If zero is in the far

tail of this posterior distribution, we conclude that the two sources of evidence for comparing

A and B are discrepant, and thus inconsistency exists. This method allows us to check the

inconsistency of the direct and indirect evidence from all sources associated with these two

treatments. This is because group (ii) above includes trials with Arm A plus other arms that

are never paired with B in any trial, and group (iii) includes trials with Arm B plus other

arms that are never paired with A in any trial.

We have applied the above method to calculate the discrepancy factors for 10 di�erent

comparisons in the thrombolytic drugs dataset: 1-2, 1-3, 1-6, 1-7, 1-8, 2-6, 2-7, 2-8, 3-7, and

3-8. Comparison of 1 vs. 4 was not done since it is only present in the multi-arm Trial 1.

The �rst row of Table 2 (�AB model w/o loop�) summarizes the result for the discrepancy

factor which is signi�cantly di�erent from 0 in terms of its 95% posterior CI. In this approach,
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Table 2: Discrepancy factors for thrombolytic drugs dataset using ABRE model. �AB model
w/o loop� refers to the method described in Section 3.6.1 and �AB model with loop� refers to
the method described in Section 3.7.2.

without de�ning loops, we have successfully detected the discrepancy of sources of evidence

for comparing 2 vs. 8, which agrees with the conclusion by Lu and Ades. These authors

found a posterior estimate for w128 of 0.678 with 95% posterior CI (−0.03, 1.72), indicating

the presence of inconsistency in loop 128. A similar result was found by White et al. [20],

also suggesting inconsistency around loop 128 from certain designs (to refer only to the set of

treatments compared in a trial) using a frequentist method. The �AB model with loop� row

will be discussed in Section 3.7.2.

3.6.2 Inconsistency Detection in AB Models by Random E�ects

One disadvantage of detecting inconsistency in AB models through �xed e�ects (Section

3.6.1) is that although it detects inconsistent comparisons, it does not identify the source of

the inconsistency as arising from certain trial and treatment combinations. Without de�ning

speci�c w factors in our AB models, e�ects of inconsistency, if any, must manifest in either the

�xed or the random e�ects in the ABRE model. Therefore, after detecting inconsistency with

�xed e�ects, we can use the random e�ects ηik in our ABRE model to investigate the most

extreme ηik, say, around the top 5% in absolute value. Using the thrombolytic drugs dataset,

the posterior means of these random e�ects are as follows: the random e�ects for Treatments

3, 8 and 1 in Trial 2 have the estimated values 0.51, 0.45 and 0.40, respectively, followed by

Treatment 3 in Trial 6 and Treatment 2 in Trial 22, where Trials 2 and 6 have large sample

sizes. The remaining random e�ects deemed to be large are for Trial 11, Treatment 7 in Trial
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Table 3: Model comparisons with DIC for thrombolytic drugs dataset

20, Treatment 2 in Trials 23 and 18, and Treatment 6 in Trial 19. As in Lu and Ades [7], we

also identify Trials 22 and 23 for Treatment 2 (AtPA) as extreme cases. These two observations

consider the comparison of 2 vs. 8, which was �rst identi�ed as discrepant using our method

in Section 3.6.1. Therefore, Treatment 2 in Trials 22 and 23 are identi�ed as the sources of

inconsistency in the dataset.

We then �t the dataset without Trials 22 and 23 using the same ABRE model. The results

for CBRE and ABRE models are compared using DIC, for the datasets with and without Trials

22 and 23. As shown in Table 3, the ABRE models have smaller DIC compared to CBRE

models in general, indicating that the model-based imputation of the unobserved arms yields

better DIC performance than ignoring such information for these data. Moreover, the ABRE

and CBRE models have similar D̄, indicating similar goodness of �t. Therefore, the reduction

in DIC for the ABRE model is mainly due to the reduction in pD, i.e., the ABRE has a smaller

e�ective number of parameters.

3.7 Relation between Inconsistency Detection in the CB and AB Models

In this section, we will show how our methods for detecting inconsistency using AB models

are related to the method using CB models. We cannot use inconsistency factors to study

loops in our AB models since consistency is assumed implicitly. However, we can investigate

inconsistency in a loop-based manner within the AB approach by de�ning discrepancy factors

using a di�erent subsetting method for groups.
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3.7.1 No Inconsistency Factors in AB Models

In our ABRE model framework, the relative e�ect comparing two treatments (for example,

dXY ) is calculated as the di�erence in the �xed mean e�ects of treatments X and Y, which

has a posterior distribution. Thus, we cannot use (7) to check for inconsistency because the

inconsistency factors w are not identi�ed in the ABRE model. To illustrate this point using the

thrombolytic drugs dataset described in Section 2.1, we applied the ABRE model in Section

3.2 with inconsistency factors for the �ve evidence loops (126, 127, 128, 137 and 138) shown in

(8). Again, we choose this dataset because Lu and Ades [7] identi�ed signi�cant inconsistency

in particular for loop 128. As in the CBRE model, we assigned independent N(0, σ2
w) priors

to the w factors, where σw ∼ U(0, 2). The resulting posterior means for all w's are near 0 with

wide posterior CIs. Also, the posterior distribution of σw has the same mean and variance

as the prior distribution σw ∼ U(0, 2), indicating that the w factors are not identi�ed by the

data in the ABRE model. We further con�rmed this using more di�use uniform priors, such as

σw ∼ U(0, 10) or σw ∼ U(0, 100) for the inconsistency factors. The ABRE model without the

inconsistency factor was also �t, and estimates for all remaining parameters were very similar

in the two �ts.

3.7.2 Loop-based Inconsistency Detection using Fixed E�ects in ABRE Models

To directly compare the AB and CB loop-based methods to detect inconsistency, we can

rede�ne the 4 subgroups in the AB method's discrepancy factor de�ned in Section 3.6.1, by

dividing trials into smaller groups corresponding to speci�c loops. For example, to detect the

discrepancy of sources of evidence for comparing A vs. B in loop ABC, we can divide the

trials into 4 groups: (i) trials that include both A and B, (ii) trials that include A and C but

not B, (iii) trials that include B and C but not A, and (iv) other trials. Then the posterior

distribution of ∆AB = (µ
(i)
A −µ

(i)
B )−(µ

(ii)
A −µ

(iii)
B ) can be used to detect the discrepancy between
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the direct and indirect evidence for comparing A vs. B in loop ABC. This is a more direct

analogue to Lu and Ades' method in the AB model framework. However, this throws away

useful information because groups (ii) and (iii) only include the trials within a speci�c loop,

and exclude other trials involving only one of arms A and B. As in Section 3.6.1, we applied

this method to the thrombolytic drugs dataset, computing discrepancy factors for 15 di�erent

pairwise comparisons, for loop 126, 127, 128, 137, and 138, with 3 comparisons in each loop:

1-2, 1-6, 2-6 for loop 126; 1-2, 1-7, 2-7 for loop 127, etc. As shown in the bottom row of Table

2 (�AB model with loop�), zero is not contained in the 95% posterior CI for the discrepancy

factor for comparison 2-8 in loop 128, indicating that inconsistency exists in loop 128 using

loop-based AB model method.

4 Simulation Studies

In this section, we generate more extreme inconsistency structures in datasets from CBRE

models to evaluate the performance of inconsistency detection using our ABRE models, and

compare the results to those of the loop-based method of Lu and Ades [7].

4.1 Simulation Settings

We simulate data for a network meta-analysis from the CBRE model for 30 trials (each

with only 2 treatment arms) to compare 4 treatments using binary outcomes as in the smoking

cessation dataset. In the CBRE models, the true values of αiB, i = 1, ..., 30 were assigned as

a sequence of length 30 from −2 to −3. True values of d12, d13 and d14 were chosen as 0.5,

0.9 and 1.2 respectively, with w123 = w124 = 0.01 and w134 = 2.5 (what we call the alternative

scenario). Using (7), the true values of d23, d24 and d34 were calculated as 0.41, 0.71, and 2.8,

respectively. The standard deviation σ in (4) was set equal to 2, and we set nik = 100 for the

kth treatment arm in the ith study. Then arti�cial data Yik can be generated according to (2)
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and (3). From this data generation scheme, the evidence in loop 134 is inconsistent, especially

in the comparison of 3 vs. 4. This can be con�rmed by comparing the randomly generated

datasets using the above settings to consistent datasets generated assuming all w = 0 but

otherwise using the above speci�cation (the null scenario). For the experimental design, since

there are 6 pairwise comparisons for these 4 treatments (1-2, 1-3, 1-4, 2-3, 2-4, and 3-4), we

assigned 5 trials to each comparison, 30 trials in total, each with two arms. We generated 1000

simulated datasets for each scenario using the Brugs package in R, where we call OpenBUGS [21]

from R, once for each simulated dataset.

4.2 Simulation Results

In this simulation, our hypothesis is that when analyzing data simulated from the alterna-

tive scenario, we will be able to detect inconsistency using the �xed e�ects in AB models for

the comparison 3 vs. 4 as stated above. We also perform the analysis using datasets from the

null scenario, which should show no evidence of inconsistency using the same method (Section

3.6.1). If the discrepancy factors indicate inconsistency in the dataset, we further investigate

the sources of inconsistency by considering the estimated random e�ects in the AB models.

To check the accuracy of the data generation, we �rst use CB models to �t the datasets from

the alternative scenario, and evaluate the coverage probabilities of 95% posterior CIs for these

true values. The coverage probabilities of the w factors (w123, w124 and w134) and the relative

treatment e�ects (d12, d13 and d14) are (0.927, 0.956, 0.935) and (0.936, 0.933 and 0.904),

respectively, indicating good data generation and not very in�uential prior distributions.

Our proposed methods using AB models (as in Section 3.6.1) were then applied. Table 4

displays 2.5% and 97.5% posterior quantiles for the discrepancy factors for these 6 pairwise com-

parisons averaged over 1000 simulated datasets under each scenario. The posterior mean of ∆34

in the simulation for the alternative scenario is −2.90, with 95% Bayesian CI (−5.20,−0.60).

17



Table 4: Discrepancy factors for simulated datasets using ABRE model. The entry of each
column is the summary of results from 1000 datasets under each scenario.

Since zero is not in the 95% Bayesian CI, we conclude that the two sources of evidence for

comparing Arm 3 and 4 are discrepant, and thus inconsistency exists. On the other hand, all

the 95% Bayesian CIs for the discrepancy factors cover zero when we set all w = 0, indicating

no evidence of inconsistency for null datasets using our AB inconsistency detection approach.

The sources of inconsistency for the alternative dataset were further investigated with the

AB model random e�ects (as in Section 3.6.2). As shown in Figure 3a, we have examined the

most extreme elements (the top 5% in absolute value) at speci�c trial-arm levels using the

posterior mean of ηik averaged over 1000 simulated datasets: Treatment 4 in Trials 25, 26, 27,

29, and Treatment 3 in Trials 29 and 30. Five out of these six extreme random e�ects are from

comparison 3 vs. 4, suggesting that both inconsistency detection methods using AB models

work well on the simulated datasets. We have also checked the other extreme observations in

Figure 3a, and found most of them to be from the 3 vs. 4 comparison as well.

Furthermore, Treatment 4 in Trial 26, 27, 29 and Treatment 3 in Trials 29 and 30 are iden-

ti�ed as extreme observations by both loop and non-loop methods using AB models (Sections

3.6.1 and 3.7.2). After deletion of these observations, none of the discrepancy factors is signif-

icantly di�erent from 0 based on their 95% Bayesian CIs, indicating successful identi�cation

of the source of inconsistency in the alternative dataset. For example, the posterior mean of
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(a) (b)

Figure 3: Simulated datasets under alternative scenario: the most inconsistent trial by treat-
ment combinations are shown in rectangle using either AB or CB models. (a) Extreme random
e�ects in �tting ABRE models. (b) Residuals in �tting CBRE models with and without in-
consistency factors.

∆34 after the deletion is −2.78, with 95% Bayesian CI (−5.77, 0.21). However, since the data

were generated using the CB model with w134 = 2.5, inconsistency is present to some degree

in all the studies in which both arms 3 and 4 appear. Here, we only delete the top 5 outlying

observations, therefore, the posterior mean of the discrepancy factor for comparing 3 vs. 4 is

still large, although the CI no longer covers 0.

We have also detected inconsistency using CB models as described in Lu and Ades [7] for

comparison. CBRE models with and without ICFs were applied to the simulated alternative

datasets, and the large value for w134 = 2.31 suggests inconsistency in loop 134, though it is

not signi�cantly di�erent from 0 according to its 95% Bayesian CI (−0.30, 4.96). Furthermore,

the sources of the inconsistency are investigated by comparing the mean residual deviance

with and without ICFs using CBRE models. As shown in Figure 3b, Treatment 4 in Trial

21, Treatment 2 in Trials 22 and 25, and Treatment 3 in Trials 28, 29 and 30 are identi�ed

as outliers using the CBRE model. Three of these outliers are from loop 134, suggesting

slightly weaker inconsistency detection than using our Section 3.6.2 method. Moreover, our

discrepancy factor of ∆34 is signi�cantly di�erent from 0 using the method proposed in Section

3.6.1, indicating more powerful inconsistency detection.
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5 Discussion and Future Work

In this paper, we have proposed methods for detection of inconsistency using an arm-based

random e�ects model for network meta-analysis (NMA). Our methods can consider loops but

do not need to, and they permit users to address issues previously tackled by CB models,

which has limitations due to its focus on relative e�ects. Compared to Lu and Ades [7],

our approach can examine speci�c comparisons in detail, showing more clearly how indirect

evidence combines with or adds to direct evidence to form the NMA estimates (c.f. Dias et

al. [8]). Moreover, after the Lu and Ades [7] approach detects inconsistency (say, for loop 128

for the thrombolytic drugs dataset), it still needs to examine the source of inconsistency by

checking each comparison in the loop. Using the �xed e�ects in ABRE models to check the

discrepancy of the di�erent sources of evidence for comparing two treatments seems to us a

simpler and more direct approach for inconsistency detection, and one that can be done using

either all sources of information, or only the information in a speci�c loop.

We identi�ed similar sources of inconsistency using ABRE models as using CB methods in

both examples and in simulated datasets. The signi�cance levels of the inconsistency factors

are only summarized in Lu and Ades [7]; they do not describe how big the ICFs should be

to declare network inconsistency. On the other hand, our methods �ag discrepancy factors

signi�cantly di�erent from 0 based on their 95% posterior CIs in both the illustrative and

simulated datasets, providing more objective evidence of inconsistency.

We further identi�ed the sources of inconsistency by the most extreme �tted random ef-

fects, which we recommend be con�rmed using the discrepancy factor method described in

Section 3.6.1. For example, in the thrombolytic drugs dataset, none of the trials detected by

the random e�ects method contains comparison of 1 vs. 2, and only Trials 22 and 23 con-

sider the comparison of 2 vs. 8; therefore, these two trials can be identi�ed as the sources of
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the inconsistency problem. Here, using both of our proposed methods in concert can identify

trial-level inconsistency that cannot be detected by the discrepancy factor method alone.

There are of course some limitations or potential concerns associated with our proposed

NMA approaches. First, a common concern with AB models is that they �break the random-

ization� by using �xed e�ects for treatments across trials. But since we are using a random

e�ects model with unstructured covariance matrix on the random e�ect terms, this concern is

mitigated since it gives the desired correlations between treatments in a speci�c trial. Second,

there exist other good methods for inconsistency detection, such as the node-splitting method

of Dias et al. [8] and the multivariate meta-regression of Higgins et al. [9]. We found that our

AB approach is a bit like Dias' method, and performs as well. Lastly, the node-splitting method

compares �direct evidence� on X vs. Y with what would be predicted from all the remaining

evidence (not just the trials including X vs. Y). Although we reported only the discrepancy

factor results based on �rst 3 of the 4 groups described in Section 3.6.1, a re-analysis of our

data using the discrepancy factors arising from all 4 groups (�direct� evidence vs. all remaining

evidence) gave similar results.

To obtain even better inconsistency detection, more work needs to be done to improve our

AB models. Future work looks to extending our methods to continuous, count, or time-to-

event outcomes, though the latter will likely require individual-level patient data except for

the simplest of models. Rather than noninformative priors, weakly or even informative priors

can be used if we have suitable information from historical or observational studies. Finally,

individual-level data can be incorporated with the aggregated data summaries used above,

allowing borrowing of strength from patient characteristics to better investigate treatment

e�ects and assess inconsistency.
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